

Roadmap for Future Projections

European Strategy Preparatory Group (ESPG)

Updated proposal for the European strategy for particle physics. ATLAS and CMS submitted documents summarizing potential physics reach for LHC14 (300fb-1), HL-LHC (3000fb-1).

ATLAS submitted a Phase-II letter of intend in March 2013.

For Snowmass, ATLAS and CMS updated and extended ESPG studies.

Next set of results planed for ECFA HL-LHC workshop Oct. 2013.

Status of Higgs Studies at the LHC

Fantastic progress since discovery July 2012

- Observation in three bosonic channels
- Evidence for fermion couplings
- Precision mass measurement
- Spin determined
- Looks more and more like the SM Higgs boson
- No evidence for non-SM decays
- No evidence for additional Higgs bosons

Questions (see Beate's talk)

- Is it the Higgs boson?
 - Does it couple to matter exactly as predicted?
 - Does it couple to gauge bosons exactly as predicted?
- Are there more Higgs bosons?
- Does the Higgs boson decay to non-SM particles?
 - E.g. to Dark Matter?

• ...

Discovery opened a new era of Higgs measurements

Higgs Boson Mass Measurement

High resolution channel H $\rightarrow \gamma\gamma$ and H \rightarrow ZZ* \rightarrow 4I

ATLAS 115 GeV < m41 < 125 GeV

	total signal full mass range	signal	ZZ(*)	Z + jets, tī	S/B	expected	observed
4μ	6.8 ± 0.8	6.3 ± 0.8	2.8 ± 0.1	0.55 ± 0.15	1.9	9.6 ± 1.0	13
2µ2e	3.4 ± 0.5	3.0 ± 0.4	1.4 ± 0.1	1.56 ± 0.33	1.0	6.0 ± 0.8	5
2e2µ	4.7 ± 0.6	4.0 ± 0.5	2.1 ± 0.1	0.55 ± 0.17	1.5	6.6 ± 0.8	8
4e	32.05	2.6 ± 0.4	1.2 ± 0.1	1.11 ± 0.28	1.1	4.9 ± 0.8	6
total	18.2 ± 2.4	5.9 ± 2.1	7.4 ± 0.4	3.74 ± 0.93	1.4	27.1 ± 3.4	32

CMS 110 GeV < m₄₁ < 160 GeV

Channel	4e	4μ	2e2µ	4ℓ
ZZ background	6.6 ± 0.8	13.8 ±1.0	18.1 ±1.3	38.5 ±1.8
Z+X	2.5 ± 1.0	1.6 ± 0.6	4.0 ± 1.6	8.1 ±2.0
All background expected	9.1 ± 1.3	15.4 ± 1.2	22.0 ± 2.0	465 + 27
$m_H = 125 \text{ GeV}$	3.5 ± 0.5	6.8 ± 0.8	8.9 ±1.0	19.2 ±1.4
$m_H = 126 \text{ GeV}$	3.9 ± 0.6	7.4 ± 0.9	9.8 ±1.1	21.1 ±1.5
Observed	16	23	32	71

Δm of 100(50) MeV achievable for 300(3000) fb⁻¹

Higgs Precision Measurements

m _H = 125 GeV			
Process	Diagram	Cross section [fb]	Unc. [%]
gluon-gluon fusion	0000000 Rep H	19520	15
vector boson fusion	No. o	1578	3
WH	WIT A WIT H	697	4
ZH	obor Zini H	394	5
ttH	M	130	15

m _H = 125 GeV		
Decay	BR [%]	Unc. [%]
bb	57.7	3.3
тт	6.32	5.7
cc	2.91	12.2
μμ	0.022	6.0
ww	21.5	4.3
99	8.57	10.2
ZZ	2.64	4.3
YY	0.23	5.0
Ζγ	0.15	9.0
ГН [MeV]	4.07	4.0

^{*} uncertainties need improvements for future precision measurements

Sensitive Higgs Channels - Table of Inputs

	untagged	jet-tag	VBF	VH	ttH
$H \rightarrow \gamma \gamma$	used				
H → WW → 2I2v					1307.7280
H → ZZ → 4I		possible			
H → bb					
Н → тт					
H → Zγ					
H → μμ					
H → invisible					
H → HH					

Measure rate of Higgs events with different production and decay combinations.

Cross-contamination of production and decay channels in categories.

Uncertainty on Signal Strength

Based on parametric simulation

L (fb ⁻¹)	$H \rightarrow \gamma \gamma$	$H \rightarrow WW$	$H \rightarrow ZZ$	$H \rightarrow bb$	$H \rightarrow \tau \tau$	$H \rightarrow Z\gamma$	$H \rightarrow inv.$
300	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[17, 28]
3000	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[6, 17]

Assumptions on systematic uncertainties

Scenario 1: no change

Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

Extrapolated from 2011/12 results

Projections in HEP

Assumptions on systematic uncertainties

Scenario 1: no change

Scenario 2: Δ theory / 2, rest $\propto 1/\sqrt{L}$

Large statistics allows to:

- be selective, use your best events.
- calibrate data in situ.

Theory calculations are work in progress, e.g. Annastasio et al working on NNNLO, PDF constrains from LHC data.

Higgs Boson Coupling Modifier Fits

$$(\sigma \cdot \text{BR})(ii \to \text{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$$

Effective theory approach. Fit deviation from the SM expectation.

$$(\sigma \cdot \mathrm{BR})(gg \to \mathrm{H} \to \gamma \gamma) = \kappa_g^2 \sigma_{\scriptscriptstyle{\mathrm{SM}}}(gg \to \mathrm{H}) \cdot \frac{\kappa_\gamma^2}{\kappa_{\scriptscriptstyle{\mathrm{H}}}^2} \mathrm{BR}_{\scriptscriptstyle{\mathrm{SM}}}(\mathrm{H} \to \gamma \gamma)$$

Higgs Boson Coupling Modifier Fits

 κ_g , κ_Y , κ_{ZY} : loop diagrams \rightarrow allow potential new physics

vector bosons KW, KZ:

up- and down-type quarks Kt, Kb:

charged leptons K_T , K_μ :

total width from sum of partial widths

alternatively:

$$\Gamma_{\rm tot} = \sum \Gamma_{ii} + \Gamma_{\rm BSM}$$

$$BR_{BSM} = \Gamma_{BSM}/\Gamma_{tot}$$

assumption here κ_W , κ_Z < 1

CMS Projection

	$L (fb^{-1})$	κ_{γ}	KW	κz	κ_g	κ_b	κ_t	κ_{τ}	$\kappa_{Z\gamma}$	BR _{inv}
	300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[14, 18]
Γ	3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[7, 11]

* additional channels under study, e.g. ttH, H to W

Precision Higgs Measurement

Imagine we do not find new (Higgs) particles in LHC data.

How large are deviations to couplings from BSM?

Deviations studied in numerous articles, e.g Gupta & Wells, arXiv:1206.3560.

They studied three types of models,

SUSY, mixed-in hidden sector,

and composite Higgs bosons.

	ΔhVV	$\Delta h ar t t$	Δhbb
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of %	tens of %
Minimal Supersymmetry	< 1%	3%	$10\%^a$, $100\%^b$

Conclusion, they find 1-10% deviations for vector bosons and few percent to tens of percent for fermion couplings.

Most popular, MSSM Higgs sector in decoupling limit (large mA)

Theoretical Uncertainties

To test the importance of theoretical uncertainties we show the effect of removing them.

Theoretical uncertainties dominated by QCD scale and PDF uncertainties. Uncertainty on BR become relevant at few % precision.

Ratio measurements

ATLAS Preliminary (Simulation)

No assumption on total width required for ratios of coupling parameters.

Ratios of partial widths are related to couplings via $\Gamma_X/\Gamma_Y = \kappa_X/\kappa_Y$.

Theoretical uncertainty important also for ratio measurements

	$3000 \mathrm{fb^{-1}}$			
	w/theory uncert.	wo/theory uncert.		
Γ_Z/Γ_g	0.28	0.22		
Γ_t/Γ_g	0.23	0.15		
$\Gamma_{\tau}/\Gamma_{\mu}$	0.25	0.23		
$\Gamma_{\tau}/\Gamma_{\mu}$ (extrap)				
Γ_{μ}/Γ_{Z}	0.14	0.14		
Γ_{τ}/Γ_{Z}	0.21	0.18		
Γ_{τ}/Γ_{Z} (extrap)				
Γ_W/Γ_Z	0.23	0.23		
$\Gamma_{\gamma}/\Gamma_{Z}$	0.029	0.029		
$\Gamma_g \bullet \Gamma_Z/\Gamma_H$	0.13	0.047		

Rare Decays - H → µµ

Small BR($H \rightarrow \mu\mu$) = 2.2x10⁻⁴; very large background, good mass resolution ~1-2%

ATLAS result using 8 TeV dataset. 95% CL limit on σ x BR: 9.8 (8.2) observed (expected)

Requires very large dataset. Observation > 5σ expected in HL-LHC.

Interesting in ttH with S/B better than 1 and $\Delta\mu/\mu \sim 25\%$.

Allows ratio of 2nd and 3rd generation lepton coupling.

Invisible Higgs Decays

Accessible via VBF and ZH production.

Results available from ATLAS and CMS using ZH production. Assuming SM production cross section, observed (expected) 95% CL limits are

ATLAS: $BR_{inv} < 65\%$ (81%) CMS: $BR_{inv} < 75\%$ (95%)

Estimate from CMS for future performance based in ZH analysis

$L (fb^{-1})$	$H \rightarrow inv$.
300	[17, 28]
3000	[6, 17]

Extended Higgs coupling fit has sensitivity to BR_{BSM}

•	$L (fb^{-1})$	BR _{inv}
	300	[14, 18]
	3000	[7, 11]

$$\Gamma_{\text{tot}} = \sum \Gamma_{ii} + \Gamma_{\text{BSM}}$$
 $\text{BR}_{\text{BSM}} = \Gamma_{\text{BSM}} / \Gamma_{\text{tot}}$

Connection to Dark Matter searches

Higgs Self-Coupling

Literature

- E.W.N. Glover, J.J. van der Bij, Physics Letters B219 (1989) 488–492
- S. Dawson, S. Dittmaier and M. Spira, Phys. Rev. D58 (1998) 115012.
- A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Eur. Phys. J. C10 (1999) 45–49
- U. Baur, T. Plehn, and D. Rainwater, Phys. Rev. Lett. 89 (2002) 151801, Phys. Rev. D67 (2003) 033003, P. 033001, Phys. Rev. D69 (2004) 053004.
- T. Binoth, S. Karg, N. Kauer, and R. Rückl, Phys. Rev. D74 (2006) 113008.
- M.J. Dolan, C. Englert, and M. Spannowsky, arXiv:1206.5001.
- J. Baglio, A. Djouadi, R. Grober, M. M. Muhlleitner, J. Quevillon, M. Spira, http://anxiv.org/abs/1212.5581
- Florian Goertz, Andreas Papaefstathiou, Li Lin Yang, José Zurita http://anxiv.org/abs/1301.3492

\sqrt{s} [TeV]	$\sigma_{gg o HH}^{ m NLO} \ [{ m fb}]$
8	8.16
14	33.89

Interesting channels:

HH → bbyy

HH → bbtt

HH → bbWW

Needs further investigation by ATLAS and CMS; expected precision is ~30%

CP Mixture

H→VV coupling:

Pseudoscalar coupling and with that sensitivity to CP admixture suppressed.

Observable of mixture nearly identical for any phase, which warrants to fit of f_{a3} only.

More advanced CP mixing studies under development.

Potential for H→ff coupling needs further investigation.

$$\mathscr{A}(X\to V_1V_2)\propto \underbrace{a_1m_V^2\epsilon_1\epsilon_2}_{\text{SM LO}} + \underbrace{a_2f_{\mu\nu}^1f^{2,\mu\nu}}_{\text{SM NLO and BSM 0+}} + \underbrace{a_3f_{\mu\nu}^1\tilde{f}^{2,\mu\nu}}_{\text{BSM 0-}}$$

$$f_{a3} = \frac{|a_3|^2 \sigma(a_1 = 0, a_2 = 0, a_3 = 1)}{|a_1|^2 \sigma(a_1 = 1, a_2 = 0, a_3 = 0) + |a_2|^2 \sigma(a_1 = 0, a_2 = 1, a_3 = 0) + |a_3|^2 \sigma(a_1 = 0, a_2 = 0, a_3 = 1)}$$

$$P_{sig}(m_{ZZ}^{},\,m_{Z}^{},\,m_{Z^{*}}^{},\,\cos\theta_{1}^{},\,\cos\theta_{2}^{},\,\Phi,\,\Phi_{1}^{},\,\cos\theta^{*}\;;\,f_{a2}^{},f_{a3}^{},\phi_{a2}^{},\phi_{a2}^{})$$

Conclusion

HL-LHC provides excellent opportunity for Higgs precision measurements.

Coupling measurements with 2-10% precision.

$L (fb^{-1})$	κ_{γ}	κw	κ _Z	κ_g	κ_b	κ_t	κ_{τ}	$\kappa_{Z\gamma}$	BR _{inv}
300	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[7, 11]

Sensitivity to invisible or undetectable Higgs decays. Indirect 95%CL BR_{BSM}= [7,11]%, direct 95%CL BR_{inv}= [6,17]%

Higgs self-coupling needs further investigation, expected precision of ~30%.

BSM Higgs sector might reveal itself through precision measurements or via a new particle already in next LHC run.

Upgrade of ATLAS and CMS essential to reach full potential.

Status of Higgs Physics Program

Channel	ATLAS Lumi [1/fb]	CMS Lumi [1/fb]	Specialty	Inclusive signature	σ Obs. (Exp.)	mass [GeV]	Signal Strength µ	Spin/ Parity
H → ZZ → 4I	4.6+20.7	5.1+19.6	mass, discovery, spin/parity	4 leptons	6.6 (4.4)	124.3 ±0.6 (stat) ±0.5 (sys)	1.5 ± 0.4	√
					6.7 (7.2)	125.8 ±0.5 (stat) ±0.2 (sys)	0.91+0.30-0.24	J
H → WW → 2I2v	4.6+20.7	4.9+19.5	cross section, coupling	2 leptons, . MET	3.8 (3.7)	consistent	0.99+0.31-0.32	√
					4.0 (5.1)	consistent	0.76 ± 0.21	√
H → γγ	4.8+20.7	5.1+19.6	mass, discovery, couplings	two photons	7.4 (4.3)	126.8 ±0.2 (stat) ±0.7 (sys)	1.55+0.33-0.28	1
					3.2 (4.2)	125.4 ±0.5 (stat) ±0.6 (sys)	0.78+0.28-0.26	-
H → bb	4.7+20.3	5.0+19.0	coupling to fermions	two b-jets	-	consistent	0.2+0.7-0.6	-
					2.1 (2.1)	consistent	1.0 ± 0.4	-
H → ττ	4.6+13.0	4.9+19.4	couplings to leptons	hadronic taus, leptons, MET	1.1 (1.7)	consistent	0.8 ± 0.7	-
					2.9 (2.6)	120+9-7	1.1 ± 0.4	-

LHC Status and Plans

Amazing LHC performance with robust detector operation led to the historic discovery of a Higgs boson

The detailed study of this new particle will be a corner stone of the future LHC program

20

LHC Upgrade Stages

LHC

Reach 10^{34} cm⁻²s⁻¹ by LS2, double by LS3 and integrate 300fb⁻¹ by 2022 <PU> = 50

HL-LHC

Lumi-level 5x 10³⁴cm⁻²s⁻¹ and integrate 3000fb⁻¹after L3 <PU> = 140

Experimental Goals

Physics: precision measurements at the EWK scale while searching for new particles up to the multi-TeV scale.

Detector: extend and enhance detector capability, especially in the forward region where effects of PU and radiation are most severe

Pile-up: achieve robustness with up to 6x higher pile-up

Trigger: maintain low thresholds to support physics goals

Requires significant upgrades for ATLAS and CMS

LS1 and Phase I Upgrade Plans

ATLAS:

- Insertable B-Layer (IBL) silicon pixel detector
- Completing coverage by installing muon chamber
- Repairs to TRT and calorimeter
- Fast tracker (FTK) uses associated mem to find and fit tracks
- Muon New Small Wheel (NSW) upgrade to maintain tracking and trigger performance in $1.3 < |\eta| < 2.4$
- Upgrade calorimeter readout electronics to improve trigger

CMS:

- Complete muon coverage and improve trigger and electronics
- Colder tracker operating point
- Partial replacement of photodetectors in hadronic calorimeter
- New beampipe and infrastructure upgrade
- Level 1 trigger upgrade
- New silicon pixel detector
- HCal photodetector and electronics upgrade

Phase II Upgrade Plans for ATLAS and CMS

Challenge: longevity due to radiation damage, pile-up

- Extensive redesign of trigger system
- Replacement of tracking detectors
- Calorimeter upgrades: electronics and new forward detectors
- Muon detector upgrades
- Software and computing upgrades to cope with large data volume

CMS Phase II tracker proposal

